Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 870
Filter
1.
Front Immunol ; 15: 1368290, 2024.
Article in English | MEDLINE | ID: mdl-38690288

ABSTRACT

Background: NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15. Therefore, autonomous production of IL-15 by NK:TCR cells might improve functional persistence of NK cells. Here we present an optimized NK:TCR product harnessed with a construct encoding for soluble IL-15 (NK:TCR/IL-15), to support their proliferation, persistence and cytotoxic capabilities. Methods: Expression of tumor-specific TCRs in peripheral blood derived NK-cells was achieved following retroviral transduction. NK:TCR/IL-15 cells were compared with NK:TCR cells for autonomous cytokine production, proliferation and survival. NK:BOB1-TCR/IL-15 cells, expressing a HLA-B*07:02-restricted TCR against BOB1, a B-cell lineage specific transcription factor highly expressed in all B-cell malignancies, were compared with control NK:BOB1-TCR and NK:CMV-TCR/IL-15 cells for effector function against TCR antigen positive malignant B-cell lines in vitro and in vivo. Results: Viral incorporation of the interleukin-15 gene into engineered NK:TCR cells was feasible and high expression of the TCR was maintained, resulting in pure NK:TCR/IL-15 cell products generated from peripheral blood of multiple donors. Self-sufficient secretion of IL-15 by NK:TCR cells enables engineered NK cells to proliferate in vitro without addition of extra cytokines. NK:TCR/IL-15 demonstrated a marked enhancement of TCR-mediated cytotoxicity as well as enhanced NK-mediated cytotoxicity resulting in improved persistence and performance of NK:BOB1-TCR/IL-15 cells in an orthotopic multiple myeloma mouse model. However, in contrast to prolonged anti-tumor reactivity by NK:BOB1-TCR/IL-15, we observed in one of the experiments an accumulation of NK:BOB1-TCR/IL-15 cells in several organs of treated mice, leading to unexpected death 30 days post-NK infusion. Conclusion: This study showed that NK:TCR/IL-15 cells secrete low levels of IL-15 and can proliferate in an environment lacking cytokines. Repeated in vitro and in vivo experiments confirmed the effectiveness and target specificity of our product, in which addition of IL-15 supports TCR- and NK-mediated cytotoxicity.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Receptors, Antigen, T-Cell , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-15/metabolism , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Cytotoxicity, Immunologic , Cell Proliferation , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Genetic Engineering
2.
Int J Pharm ; 655: 124027, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38554742

ABSTRACT

Cancer immunotherapy has emerged as a promising clinical treatment strategy in recent years. Unfortunately, the satisfactory antitumor therapeutic efficacy of immunotherapy is limited by intricate immunosuppressive tumor microenvironment (ITM). To remodel the ITM and alleviate the immune evasion, we constructed FA-PEG-modified liposomes to deliver plasmid IL-15 (pIL-15) and gemcitabine (GEM) (FPCL@pIL-15 + FPGL), respectively. The FPCL@pIL-15 (150 nm) and FPGL (120 nm) exhibited symmetrically spherical structures as well as desirable penetration and accumulation on tumor tissue depending on folic acid (FA) specialized targeting function. The transfected expression of IL-15 efficiently fosters the proliferation and co-activation of Natural killer (NK) cells and CD8+T cells through binding to IL-15R. FPGL upregulated the expression of Natural killer group 2 member D ligands (NKG2DLs) and reinforced recognition by NK cells to alleviate the immune evasion, and simultaneously promoted activation of CD8+T cells through immunogenic cell death (ICD) effects. More importantly, the combinatorial administration achieved intended anti-tumor efficacy in the subcutaneous 4T1 tumor model. In essence, we demonstrated that combining FPCL@pIL-15 with FPGL synergistically stimulates and mobilizes the immune system to reverse the ITM and trigger an anti-tumor immune response, indicating a tremendous potential for application in immunotherapy.


Subject(s)
Gemcitabine , Neoplasms , Cell Line, Tumor , Immunotherapy , Interleukin-15/genetics , Plasmids , Tumor Microenvironment
3.
Transplant Proc ; 56(3): 678-685, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38433025

ABSTRACT

BACKGROUND: Abdominal aortic calcification (AAC) is associated with cardiovascular-related mortality, along with an elevated risk of coronary, cerebrovascular, and cardiovascular events. Notably, AAC is strongly associated with poor overall and recurrence free survival posthepatectomy for hepatocellular carcinoma. Despite the acknowledged significance of atherosclerosis in systemic inflammation, its response to ischemia/reperfusion injury (IRI) remains poorly elucidated. In this study, we aimed to clarify the impact of atherosclerosis on the liver immune system using a warm IRI mouse model. METHODS: Injury was induced in an atherosclerotic mouse model (ApoE-/-) or C57BL/6J wild-type (WT) mice through 70% clamping for 1 hour and analyzed after 6 hours of reperfusion. RESULTS: Elevated serum levels of aspartate and alanine aminotransferase, along with histological assessment, indicated considerable damage in the livers of ApoE-/- mice than that in WT mice. This indicates a substantial contribution of atherosclerosis to IRI. Furthermore, T and natural killer (NK) cells in ApoE-/- mouse livers displayed a more inflammatory phenotype than those in WT mouse livers. Reverse transcription-polymerase chain reaction analysis revealed a significant upregulation of interleukin (IL)-15 and its transcriptional regulator, interferon regulatory factor-1 (IRF-1) in ApoE-/- mouse livers compared with that in WT mouse livers. CONCLUSIONS: These findings suggest that in an atherosclerotic mouse model, atherosclerosis can mirror intrahepatic immunity, particularly activating liver NK and T cells through IL-15 production, thereby exacerbating hepatic damage. The upregulation of IL-15 expression is associated with IRF-1 overexpression.


Subject(s)
Atherosclerosis , Disease Models, Animal , Interferon Regulatory Factor-1 , Liver , Mice, Inbred C57BL , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Mice , Liver/pathology , Liver/metabolism , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Male , Killer Cells, Natural/immunology , Interleukin-15/genetics
4.
J Transl Med ; 22(1): 171, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38368374

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has shown remarkable responses in hematological malignancies with several approved products, but not in solid tumors. Patients suffer from limited response and tumor relapse due to low efficacy of CAR-T cells in the complicated and immunosuppressive tumor microenvironment. This clinical challenge has called for better CAR designs and combined strategies to improve CAR-T cell therapy against tumor changes. METHODS: In this study, IL-15/IL-15Rα was inserted into the extracellular region of CAR targeting mesothelin. In-vitro cytotoxicity and cytokine production were detected by bioluminescence-based killing and ELISA respectively. In-vivo xenograft mice model was used to evaluate the anti-tumor effect of CAR-T cells. RNA-sequencing and online database analysis were used to identify new targets in residual gastric cancer cells after cytotoxicity assay. CAR-T cell functions were detected in vitro and in vivo after GLI Pathogenesis Related 1 (GLIPR1) knockdown in gastric cancer cells. Cell proliferation and migration of gastric cancer cells were detected by CCK-8 and scratch assay respectively after GLIPR1 were overexpressed or down-regulated. RESULTS: CAR-T cells constructed with IL-15/IL-15Rα (CAR-ss-T) showed significantly improved CAR-T cell expansion, cytokine production and cytotoxicity, and resulted in superior tumor control compared to conventional CAR-T cells in gastric cancer. GLIPR1 was up-regulated after CAR-T treatment and survival was decreased in gastric cancer patients with high GLIPR1 expression. Overexpression of GLIPR1 inhibited cytotoxicity of conventional CAR-T but not CAR-ss-T cells. CAR-T treatment combined with GLIPR1 knockdown increased anti-tumor efficacy in vitro and in vivo. CONCLUSIONS: Our data demonstrated for the first time that this CAR structure design combined with GLIPR1 knockdown in gastric cancer improved CAR-T cell-mediated anti-tumor response.


Subject(s)
Receptors, Chimeric Antigen , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Interleukin-15/genetics , Interleukin-15/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local/metabolism , Immunotherapy, Adoptive/methods , T-Lymphocytes , Xenograft Model Antitumor Assays , Tumor Microenvironment , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/metabolism
5.
J Control Release ; 367: 45-60, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246204

ABSTRACT

PD-1/PD-L1-based immune checkpoint blockade therapy has shown limited benefits in tumor patients, partially attributed to the inadequate infiltration of immune effector cells within tumors. Here, we established a nanoplatform named DPPA/IL-15 NPs to target PD-L1 for the tumor delivery of IL-15 messenger RNA (mRNA). DPPA/IL-15 NPs were endowed with ultrasound responsiveness and contrast-enhanced ultrasound (CEUS) imaging performance. They effectively protected IL-15 mRNA from degradation and specifically transfected it into tumor cells through the utilization of ultrasound-targeted microbubble destruction (UTMD). This resulted in the activation of IL-15-related immune effector cells while blocking the PD-1/PD-L1 pathway. In addition, UTMD could generate reactive oxygen species (ROS) that induce endoplasmic reticulum (ER) stress-driven immunogenic cell death (ICD), initiating anti-tumor immunity. In vitro and in vivo studies revealed that this combination therapy could induce a robust systemic immune response and enhance anti-tumor efficacy. Thus, this combination therapy has the potential for clinical translation through enhanced immunotherapy and provides real-time ultrasound imaging guidance.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Microbubbles , Programmed Cell Death 1 Receptor/metabolism , Interleukin-15/genetics , Neoplasms/therapy , Immunotherapy/methods , Tumor Microenvironment , Cell Line, Tumor
6.
J Clin Invest ; 134(6)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271093

ABSTRACT

Virus-induced memory T cells often express functional cross-reactivity, or heterologous immunity, to other viruses and to allogeneic MHC molecules that is an important component of pathogenic responses to allogeneic transplants. During immune responses, antigen-reactive naive and central memory T cells proliferate in secondary lymphoid organs to achieve sufficient cell numbers to effectively respond, whereas effector memory T cell proliferation occurs directly within the peripheral inflammatory microenvironment. Mechanisms driving heterologous memory T cell proliferation and effector function expression within peripheral tissues remain poorly understood. Here, we dissected proliferation of heterologous donor-reactive memory CD8+ T cells and their effector functions following infiltration into heart allografts with low or high intensities of ischemic inflammation. Proliferation within both ischemic conditions required p40 homodimer-induced IL-15 transpresentation by graft DCs, but expression of effector functions mediating acute allograft injury occurred only in high-ischemic allografts. Transcriptional responses of heterologous donor-reactive memory CD8+ T cells were distinct from donor antigen-primed memory CD8+ T cells during early activation in allografts and at graft rejection. Overall, the results provide insights into mechanisms driving heterologous effector memory CD8+ T cell proliferation and the separation between proliferation and effector function that is dependent on the intensity of inflammation within the tissue microenvironment.


Subject(s)
Heart Transplantation , Interleukin-15 , Animals , Mice , CD8-Positive T-Lymphocytes , Graft Rejection , Immunologic Memory , Interleukin-15/genetics , Mice, Inbred C57BL , Transplantation, Homologous , Interleukin-9/metabolism
7.
Am J Physiol Endocrinol Metab ; 326(3): E326-E340, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38294696

ABSTRACT

This study aimed to evaluate the role of skeletal muscle-derived interleukin (IL)-15 in the regulation of skeletal muscle autophagy using IL-15 knockout (KO) and transgenic (TG) mice. Male C57BL/6 wild-type (WT), IL-15 KO, and IL-15 TG mice were used in this study. Changes in muscle mass, forelimb grip strength, succinate dehydrogenase (SDH) activity, gene and protein expression levels of major regulators and indicators of autophagy, comprehensive gene expression, and DNA methylation in the gastrocnemius muscle were analyzed. Enrichment pathway analyses revealed that the pathology of IL-15 gene deficiency was related to the autophagosome pathway. Moreover, although IL-15 KO mice maintained gastrocnemius muscle mass, they exhibited a decrease in autophagy induction. IL-15 TG mice exhibited a decrease in gastrocnemius muscle mass and an increase in forelimb grip strength and SDH activity in skeletal muscle. In the gastrocnemius muscle, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α (AMPKα) to total AMPKα and unc-51-like autophagy activating kinase 1 and Beclin1 protein expression were higher in the IL-15 TG group than in the WT group. IL-15 gene deficiency induces a decrease in autophagy induction. In contrast, IL-15 overexpression could improve muscle quality by activating autophagy induction while decreasing muscle mass. The regulation of IL-15 in autophagy in skeletal muscles may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.NEW & NOTEWORTHY IL-15 gene deficiency can decrease autophagy induction. However, although IL-15 overexpression induced a decrease in muscle mass, it led to an improvement in muscle quality. Based on these results, understanding the role of IL-15 in regulating autophagy pathways within skeletal muscle may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.


Subject(s)
Interleukin-15 , Muscle, Skeletal , Mice , Male , Animals , Interleukin-15/genetics , Interleukin-15/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Mice, Transgenic , Mice, Knockout , AMP-Activated Protein Kinases/metabolism , Autophagy
8.
Signal Transduct Target Ther ; 9(1): 16, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212320

ABSTRACT

Multiple myeloma (MM) remains a challenging hematologic malignancy despite advancements in chimeric antigen receptor T-cell (CAR-T) therapy. Current targets of CAR-T cells used in MM immunotherapy have limitations, with a subset of patients experiencing antigen loss resulting in relapse. Therefore, novel targets for enhancing CAR-T cell therapy in MM remain needed. Fc receptor-like 5 (FCRL5) is a protein marker with considerably upregulated expression in MM and has emerged as a promising target for CAR-T cell therapeutic interventions, offering an alternative treatment for MM. To further explore this option, we designed FCRL5-directed CAR-T cells and assessed their cytotoxicity in vitro using a co-culture system and in vivo using MM cell-derived xenograft models, specifically focusing on MM with gain of chromosome 1q21. Given the challenges in CAR-T therapies arising from limited T cell persistence, our approach incorporates interleukin-15 (IL-15), which enhances the functionality of central memory T (TCM) cells, into the design of FCRL5-directed CAR-T cells, to improve cytotoxicity and reduce T-cell dysfunction, thereby promoting greater CAR-T cell survival and efficacy. Both in vitro and xenograft models displayed that FCRL5 CAR-T cells incorporating IL-15 exhibited potent antitumor efficacy, effectively inhibiting the proliferation of MM cells and leading to remarkable tumor suppression. Our results highlight the capacity of FCRL5-specific CAR-T cells with the integration of IL-15 to improve the therapeutic potency, suggesting a potential novel immunotherapeutic strategy for MM treatment.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/genetics , Interleukin-15/genetics , Interleukin-15/metabolism , Cell Line, Tumor , T-Lymphocytes , Receptors, Fc/metabolism
9.
Clin Cancer Res ; 30(8): 1555-1566, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-37910044

ABSTRACT

PURPOSE: Chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies are effective in a subset of patients with solid tumors, but new approaches are needed to universally improve patient outcomes. Here, we developed a technology to leverage the cooperative effects of IL15 and IL21, two common cytokine-receptor gamma chain family members with distinct, pleiotropic effects on T cells and other lymphocytes, to enhance the efficacy of adoptive T cells. EXPERIMENTAL DESIGN: We designed vectors that induce the constitutive expression of either membrane-tethered IL15, IL21, or IL15/IL21. We used clinically relevant preclinical models of transgenic CARs and TCRs against pediatric and adult solid tumors to determine the effect of the membrane-tethered cytokines on engineered T cells for human administration. RESULTS: We found that self-delivery of these cytokines by CAR or TCR T cells prevents functional exhaustion by repeated stimulation and limits the emergence of dysfunctional natural killer (NK)-like T cells. Across different preclinical murine solid tumor models, we observed enhanced regression with each individual cytokine but the greatest antitumor efficacy when T cells were armored with both. CONCLUSIONS: The coexpression of membrane-tethered IL15 and IL21 represents a technology to enhance the resilience and function of engineered T cells against solid tumors and could be applicable to multiple therapy platforms and diseases. See related commentary by Ruffin et al., p. 1431.


Subject(s)
Interleukins , Neoplasms , Receptors, Chimeric Antigen , Adult , Humans , Mice , Animals , Child , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Interleukin-15/genetics , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Neoplasms/genetics , Neoplasms/therapy , Cytokines/metabolism
11.
Sci Rep ; 13(1): 18995, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923822

ABSTRACT

Blockade of the immune checkpoint axis consisting of programmed death-1 (PD-1) and its ligand PD-L1 alleviates the functional inhibition of tumor-infiltrating lymphoid cells yet weakly induces their expansion. Exogenous cytokines could further expand lymphoid cells and thus synergize with αPD-L1 therapy. However, systemic delivery of most cytokines causes severe toxicity due to unspecific expansion of immune cells in the periphery. Here, we modelled local delivery of cytokines and αPD-L1 therapeutics to immune cell-containing in vitro melanoma tumors. Three-dimensional tumor models consisting of 624-MEL cells were co-cultured with human peripheral blood lymphoid cells (PBLs) in presence of the cytokines IL-2, IL-7, IL-15, IL-21 and IFN-γ. To model local gene therapy, melanoma tumors were modified with lentiviral vectors encoding IL-15 fused to IL-15Rα (IL-15/IL-15Rα) and K2-Fc, a fusion of a human PD-L1 specific single domain antibody to immunoglobulin (Ig)G1 Fc. To evaluate the interplay between PBL fractions, NK cells, CD4+ T cells or CD8+ T cells were depleted. Tumor cell killing was followed up using real time imaging and immune cell expansion and activation was evaluated with flow cytometry. Among the tested cytokines, IL-15 was the most potent cytokine in stimulating tumor cell killing and expanding both natural killer (NK) cells and CD8+ T cells. Gene-based delivery of IL-15/IL-15Rα to tumor cells, shows expansion of NK cells, activation of NK cells, CD4+ and CD8+ T cells, and killing of tumor spheroids. Both NK cells and CD8+ T cells are necessary for tumor cell killing and CD4+ T-cell activation was reduced without NK cells. Co-delivery of K2-Fc improved tumor cell killing coinciding with increased activation of NK cells, which was independent of bystander T cells. CD4+ or CD8+ T cells were not affected by the co-delivery of K2-Fc even though NK-cell activation impacted CD4+ T-cell activation. This study demonstrates that gene-based delivery of IL-15/IL-15Rα to tumor cells effectively mediates anti-tumor activity and sensitizes the tumor microenvironment for therapy with αPD-L1 therapeutics mainly by impacting NK cells. These findings warrant further investigation of gene-based IL-15 and K2-Fc delivery in vivo.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Humans , B7-H1 Antigen/genetics , Interleukin-15/genetics , Killer Cells, Natural , Melanoma/genetics , Melanoma/therapy , Cytokines/pharmacology , Genetic Therapy , CD4-Positive T-Lymphocytes , Tumor Microenvironment
12.
Nat Commun ; 14(1): 6942, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938576

ABSTRACT

Allogeneic Vγ9Vδ2 (Vδ2) T cells have emerged as attractive candidates for developing cancer therapy due to their established safety in allogeneic contexts and inherent tumor-fighting capabilities. Nonetheless, the limited clinical success of Vδ2 T cell-based treatments may be attributed to donor variability, short-lived persistence, and tumor immune evasion. To address these constraints, we engineer Vδ2 T cells with enhanced attributes. By employing CD16 as a donor selection biomarker, we harness Vδ2 T cells characterized by heightened cytotoxicity and potent antibody-dependent cell-mediated cytotoxicity (ADCC) functionality. RNA sequencing analysis supports the augmented effector potential of Vδ2 T cells derived from CD16 high (CD16Hi) donors. Substantial enhancements are further achieved through CAR and IL-15 engineering methodologies. Preclinical investigations in two ovarian cancer models substantiate the effectiveness and safety of engineered CD16Hi Vδ2 T cells. These cells target tumors through multiple mechanisms, exhibit sustained in vivo persistence, and do not elicit graft-versus-host disease. These findings underscore the promise of engineered CD16Hi Vδ2 T cells as a viable therapeutic option for cancer treatment.


Subject(s)
Hematopoietic Stem Cell Transplantation , Ovarian Neoplasms , Female , Humans , Interleukin-15/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Biomarkers
13.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3787-3799, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37805854

ABSTRACT

The aim of this study was to investigate the functional characteristics and in vitro specific killing effect of EGFRvIII CAR-T cells co-expressing interleukin-15 and chemokine CCL19, in order to optimize the multiple functions of CAR-T cells and improve the therapeutic effect of CAR-T cells targeting EGFRvIII on glioblastoma (GBM). The recombinant lentivirus plasmid was obtained by genetic engineering, transfected into 293T cells to obtain lentivirus and infected T cells to obtain the fourth generation CAR-T cells targeting EGFRvIII (EGFRvIII-IL-15-CCL19 CAR-T). The expression rate of CAR molecules, proliferation, chemotactic ability, in vitro specific killing ability and anti-apoptotic ability of the fourth and second generation CAR-T cells (EGFRvIII CAR-T) were detected by flow cytometry, cell counter, chemotaxis chamber and apoptosis kit. The results showed that compared with EGFRvIII CAR-T cells, EGFRvIII-IL-15-CCL19 CAR-T cells successfully secreted IL-15 and CCL19, and had stronger proliferation, chemotactic ability and anti-apoptosis ability in vitro (all P < 0.05), while there was no significant difference in killing ability in vitro. Therefore, CAR-T cells targeting EGFRvIII and secreting IL-15 and CCL19 are expected to improve the therapeutic effect of glioblastoma and provide an experimental basis for clinical trials.


Subject(s)
Glioblastoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/metabolism , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/metabolism , Interleukin-15/genetics , Interleukin-15/metabolism , Chemokine CCL19/metabolism , Cell Line, Tumor , T-Lymphocytes/metabolism
14.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 31-36, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37807337

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous malignancy characterized by the clonal expansion of myeloid precursor cells in the bone marrow. In this study, we investigated the interplay of hematological parameters, CD markers, genetic polymorphisms, and database mutations in the interleukin 15 (IL15) gene in AML patients. We enrolled 59 newly diagnosed AML patients and analyzed their bone marrow specimens using flow cytometry and molecular techniques. The hematological parameters of the AML patients revealed a significant increase in platelet count and RBC, Hb, and HCT levels compared to healthy individuals. CD marker expression analysis revealed upregulation of CD33, CD45, CD13, CD117, CD38, HLA-DR, CD15, CD64, MPO, CD34, and CD11c in AML patients. Molecular analysis showed 15 mutations in different positions of exon 8 of the IL15 gene, with the most frequent mutation being a homozygous mutation resulting from a nucleotide substitution. Additionally, 10 novel heterozygous mutations were identified in different locations of chromosome 4, with a low variant rate. Finally, database analysis of gnomAD and Mutagene revealed a high number of potential driver mutations in the IL15 gene in leukemia patients. These results provide valuable insights into the genetic and immunophenotypic characteristics of AML patients and highlight the potential role of IL15 in AML pathogenesis.


Subject(s)
Interleukin-15 , Leukemia, Myeloid, Acute , Humans , Interleukin-15/genetics , Antigens, CD/metabolism , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Immunophenotyping , Flow Cytometry/methods , Polymorphism, Genetic
15.
Front Immunol ; 14: 1226518, 2023.
Article in English | MEDLINE | ID: mdl-37818365

ABSTRACT

Introduction: Natural killer 92 (NK-92) cells are an attractive therapeutic approach as alternative chimeric antigen receptor (CAR) carriers, different from T cells, once they can be used in the allogeneic setting. The modest in vivo outcomes observed with NK-92 cells continue to present hurdles in successfully translating NK-92 cell therapies into clinical applications. Adoptive transfer of CAR-NK-92 cells holds out the promise of therapeutic benefit at a lower rate of adverse events due to the absence of GvHD and cytokine release syndrome. However, it has not achieved breakthrough clinical results yet, and further improvement of CAR-NK-92 cells is necessary. Methods: In this study, we conducted a comparative analysis between CD19-targeted CAR (CAR.19) co-expressing IL-15 (CAR.19-IL15) with IL-15/IL-15Rα (CAR.19-IL15/IL15Rα) to promote NK cell proliferation, activation, and cytotoxic activity against B-cell leukemia. CAR constructs were cloned into lentiviral vector and transduced into NK-92 cell line. Potency of CAR-NK cells were assessed against CD19-expressing cell lines NALM-6 or Raji in vitro and in vivo in a murine model. Tumor burden was measured by bioluminescence. Results: We demonstrated that a fourth- generation CD19-targeted CAR (CAR.19) co-expressing IL-15 linked to its receptor IL-15/IL-15Rα (CAR.19-IL-15/IL-15Rα) significantly enhanced NK-92 cell proliferation, proinflammatory cytokine secretion, and cytotoxic activity against B-cell cancer cell lines in vitro and in a xenograft mouse model. Conclusion: Together with the results of the systematic analysis of the transcriptome of activated NK-92 CAR variants, this supports the notion that IL-15/IL-15Rα comprising fourth-generation CARs may overcome the limitations of NK-92 cell-based targeted tumor therapies in vivo by providing the necessary growth and activation signals.


Subject(s)
Receptors, Chimeric Antigen , Humans , Mice , Animals , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Interleukin-15/genetics , Interleukin-15/metabolism , Cell Line, Tumor , Killer Cells, Natural , Antigens, CD19 , Cell Proliferation
16.
Front Immunol ; 14: 1165404, 2023.
Article in English | MEDLINE | ID: mdl-37564658

ABSTRACT

Claudin 18.2 (CLDN18.2)-targeting chimeric antigen receptor (CAR)-modified T cells are one of the few cell therapies currently producing an impressive therapeutic effect in treating solid tumors; however, their long-term therapeutic efficacy is not satisfactory with a short duration of response. Transgenic expression of interleukin (IL)-15 has been reported to promote T-cell expansion, survival, and function and enhance the antitumor activity of engineered T cells in vitro and in vivo. Therefore, this study aimed to explore whether IL-15 modification would increase the antitumor activity of CLDN18.2-targeting CAR-modified T (CAR-T) cells in immunocompetent murine tumor models. CLDN18.2-specific CAR-T cells with (H9 CAR-IL15) or without transgenic IL-15 expression (H9 CAR) were generated by retroviral transduction of mouse splenic T cells. In vitro, compared with H9 CAR T cells, H9 CAR-IL15 T cells exhibited better expansion and viability in the absence of antigen stimulation, with a less differentiated and T-cell exhausted phenotype; although IL-15 modification did not affect the production of effector cytokines and cytotoxic activity in the short-term killing assay, it moderately improved the in vitro recursive killing activity of CAR-T cells against CLDN18.2-expressing tumor cells. In vivo, H9 CAR T cells showed no antitumor activity against CLDN18.2-expressing pancreatic tumors in immunocompetent mice without lymphodepleting pretreatment; however, H9 CAR-IL15 T cells produced significant tumor-suppressive effects. Furthermore, H9 CAR-IL15 T cells exhibited greater in vivo expansion and tumor infiltration when combined with lymphodepleting preconditioning, resulting in superior antitumor activity in two murine tumor models and a survival advantage in one tumor model. We further demonstrated that recurrent tumors following H9 CAR-IL15 T-cell therapy downregulated CLDN18.2 expression, suggesting immune escape through the selection of antigen-negative cells under persistent CAR-T-cell immune pressure. In conclusion, our findings provide preclinical evidence supporting the clinical evaluation of IL-15-expressing CLDN18.2 CAR-T cells in patients with CLDN18.2-positive tumors.


Subject(s)
Interleukin-15 , Neoplasm Recurrence, Local , Mice , Animals , Interleukin-15/genetics , Immunotherapy, Adoptive/methods , T-Lymphocytes , Claudins/genetics
17.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37536937

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs)-based treatments have been recommended as the first line for refractory recurrent and/or metastatic nasopharyngeal carcinoma (NPC) patients, yet responses vary, and predictive biomarkers are urgently needed. We selected serum interleukin-15 (sIL-15) out of four interleukins as a candidate biomarker, while most patients' sIL-15 levels were too low to be detected by conventional methods, so it was necessary to construct a highly sensitive method to detect sIL-15 in order to select NPC patients who would benefit most or least from ICIs. METHODS: Combining a primer exchange reaction (PER), transcription-mediated amplification (TMA), and a immuno-PER-TMA-CRISPR/Cas13a system, we developed a novel multiple signal amplification platform with a detection limit of 32 fg/mL, making it 153-fold more sensitive than ELISA. RESULTS: This platform demonstrated high specificity, repeatability, and versatility. When applied to two independent cohorts of 130 NPC sera, the predictive value of sIL-15 was accurate in both cohorts (area under the curve: training, 0.882; validation, 0.898). Additionally, lower sIL-15 levels were correlated with poorer progression-free survival (training, HR: 0.080, p<0.0001; validation, HR: 0.053, p<0.0001). CONCLUSION: This work proposes a simple and sensitive approach for sIL-15 detection to provide insights for personalized immunotherapy of NPC patients.


Subject(s)
Interleukin-15 , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/therapy , Interleukin-15/genetics , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Enzyme-Linked Immunosorbent Assay
18.
Sci Adv ; 9(30): eadd6997, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37494448

ABSTRACT

Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells is promising, with early-phase clinical studies showing encouraging responses. However, the transcriptional signatures that control the fate of CAR-NK cells after infusion and factors that influence tumor control remain poorly understood. We performed single-cell RNA sequencing and mass cytometry to study the heterogeneity of CAR-NK cells and their in vivo evolution after adoptive transfer, from the phase of tumor control to relapse. Using a preclinical model of noncurative lymphoma and samples from a responder and a nonresponder patient treated with CAR19/IL-15 NK cells, we observed the emergence of NK cell clusters with distinct patterns of activation, function, and metabolic signature associated with different phases of in vivo evolution and tumor control. Interaction with the highly metabolically active tumor resulted in loss of metabolic fitness in NK cells that could be partly overcome by incorporation of IL-15 in the CAR construct.


Subject(s)
Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Interleukin-15/genetics , Interleukin-15/metabolism , Cytokines/metabolism , Cell Line, Tumor , Killer Cells, Natural , Cell- and Tissue-Based Therapy
19.
Immunology ; 170(1): 83-104, 2023 09.
Article in English | MEDLINE | ID: mdl-37278103

ABSTRACT

Autosomal recessive (AR) and dominant (AD) deficiencies of TLR3 and TRIF are believed to be crucial genetic causes of herpes simplex encephalitis (HSE), which is a fatal disease causing focal or global cerebral dysfunction following infection with herpes simplex virus type 1 (HSV-1). However, few studies have been conducted on the immunopathological networks of HSE in the context of TLR3 and TRIF defects at the cellular and molecular levels. In this work, we deciphered the crosstalk between type I IFN (IFN-I)-producing epithelial layer and IL-15-producing dendritic cells (DC) to activate NK cells for the protective role of TLR3/TRIF pathway in HSE progression after vaginal HSV-1 infection. TLR3- and TRIF-ablated mice showed enhanced susceptibility to HSE progression, along with high HSV-1 burden in vaginal tract, lymphoid tissues and CNS. The increased HSV-1 burden in TLR3- and TRIF-ablated mice did not correlate with increased infiltration of Ly-6C+ monocytes, but it was closely associated with impaired NK cell activation in vaginal tract. Furthermore, using delicate ex vivo experiments and bone marrow transplantation, TRIF deficiency in tissue-resident cells, such as epithelial cells in vaginal tract, was found to cause impaired NK cell activation by means of low IFN-I production, whereas IFN-I receptor in DC was required for NK cell activation via IL-15 production in response to IFN-I produced from epithelial layer. These results provide new information about IFN-I- and IL-15-mediated crosstalk between epithelial cells and DC at the primary infection site, which suppresses HSE progression in a TLR3- and TRIF-dependent manner.


Subject(s)
Encephalitis, Herpes Simplex , Herpesvirus 1, Human , Female , Animals , Mice , Encephalitis, Herpes Simplex/genetics , Toll-Like Receptor 3/genetics , Interleukin-15/genetics , Dendritic Cells , Adaptor Proteins, Vesicular Transport/genetics
20.
Biomaterials ; 298: 122135, 2023 07.
Article in English | MEDLINE | ID: mdl-37148758

ABSTRACT

The use of appropriately designed immunotherapeutic bacteria is an appealing approach to tumor therapy because the bacteria specifically target tumor tissue and deliver therapeutic payloads. The present study describes the engineering of an attenuated strain of Salmonella typhimurium deficient in ppGpp biosynthesis (SAM) that could secrete Vibrio vulnificus flagellin B (FlaB) conjugated to human (hIL15/FlaB) and mouse (mIL15/FlaB) interleukin-15 proteins in the presence of L-arabinose (L-ara). These strains, named SAMphIF and SAMpmIF, respectively, secreted fusion proteins that retained bioactivity of both FlaB and IL15. SAMphIF and SAMpmIF inhibited the growth of MC38 and CT26 subcutaneous (sc) tumors in mice and increased mouse survival rate more efficiently than SAM expressing FlaB alone (SAMpFlaB) or IL15 alone (SAMpmIL15 and SAMphIL15), although SAMpmIF had slightly greater antitumor activity than SAMphIF. The mice treated with these bacteria showed enhanced macrophage phenotype shift, from M2-like to M1-like, as well as greater proliferation and activation of CD4+ T, CD8+ T, NK, and NKT cells in tumor tissues. After tumor eradication by these bacteria, ≥50% of the mice show no evidence of tumor recurrence upon rechallenge with the same tumor cells, indicating that they had acquired long-term immune memory. Treatment of mice of 4T1 and B16F10 highly malignant sc tumors with a combination of these bacteria and an immune checkpoint inhibitor, anti-PD-L1 antibody, significantly suppressed tumor metastasis and increased mouse survival rate. Taken together, these findings suggest that SAM secreting IL15/FlaB is a novel therapeutic candidate for bacterial-mediated cancer immunotherapy and that its antitumor activity is enhanced by combination with anti-PD-L1 antibody.


Subject(s)
Interleukin-15 , Neoplasms , Humans , Animals , Mice , Interleukin-15/genetics , Salmonella typhimurium , Neoplasms/therapy , Proteins , Immunotherapy , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...